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Heat conduction in a one-dimensional aperiodic system
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We study the energy transport properties of one-dimensional nonlinear aperiodic lattice models in this paper.
It is found that, compared with their periodic and disordered counterparts, the quasiperiodic and fractal models
exhibit critical macroscopic behavior in the low-temperature region, while in the high-temperature region all
the models show the same property of energy transport. The relationship between the observed macroscopic
behaviors and the localization theory is discussed.
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It is of fundamental importance to establish a connect
between microscopic-level dynamical properties and ma
scopic statistical behavior of molecular systems. In c
densed matter physics, the localization theory plays a
role when aperiodic structures are involved. For on
dimensional systems, as is well known, all the eigenstates
either extended in a periodic lattice model or localized in
disordered one@1#. Between these two extremes are the q
siperiodic systems, which are believed to be dominated
critical eigenstates@2#, and the fractal systems, in whose v
brational spectra exist a crossover between extended s
~long-wavelength phonon! and localized states~so-called
fracton! @3#. The study of quasiperiodic systems and frac
systems has attracted particular interest since they repre
intermediate cases between periodic solids and disord
ones. It has been found that a lot of real-world materials h
quasiperiodic order@2,4# or fractal structure@3#. Therefore,
investigating the statistical properties of these systems
establishing their connection to the microscopic featu
mentioned above will be important for both theoretical stu
ies and applications.

Heat conduction in a chain of coupled nonlinear oscil
tors is a vivid example of studying the microscopic origin
the macroscopic behaviors in terms of deterministic mic
scopic dynamics. It is one of the oldest but still a rath
fundamental problem in nonequilibrium statistical mecha
ics. Intending to understand the underlying mechanism of
Fourier heat law (J52kdT/dx, whereJ is the heat flux;
dT/dx is the temperature gradient;k is the heat conductiv-
ity!, the study of heat conduction has attracted increas
attention in recent years@5–11#. Normal heat transport be
havior governed by the Fourier heat law implies a decay
of heat fluxJ;N21, whereN is the system size. For one
dimensional nonlinear lattice models, it has shown that
heat conductivity is abnormal~with J;N20.57) in the case
without onsite potential@5,6# and is normal~with J;N21) in
the existence of an onsite potential@7–9#. The exceptions
with a normal heat conduction in the absence of the on
potential are also found in two kinds of models, one is
one-dimensional lattice with periodic potential of neare
neighbor interaction@10#, and another is the disordered FPU
b model @11#.

In order to unfold the role of the localization more clear
we focus on the models without onsite potential in this pap
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More specifically, we adopt a well-known molecular dynam
ics model, i.e., the FPU-b model described by the Hamil
tonian

H5(
i

N

Hi , Hi5
pi

2

2mi
1V~xi 112xi !

with V(x)5x2/21bx4/4. b is fixed to 1 throughout the pa
per.mi denotes the mass of thei th particle. In our study we
limit mi to the binary valueA or B. When putting the par-
ticles along the chain withA and B alternately a periodic
FPU model~PFPU! is obtained, and in the specific case
A5B one meets the normal monatomic FPU-b model.
When arranging particle masses withA or B in a random
way, a disordered FPU model~DFPU! is gotten. And when
managing the mass distribution of the particles following t
Fibonacci sequence, one approaches a quasiperiodic
model ~QFPU! @2#. A Fibonacci sequenceB,BA,BAB,
BABBA,BABBABAB,BABBABABBABBA, . . . is cre-
ated according to the production ruleSj5Sj 21uSj 22 for
j >3 with S15B and S25BA. Meanwhile when applying
an iterative rule,A→ABA, B→BBB continuously one
get the Cantor fractal structure model~FFPU! @12#:
A,ABA,ABABBBABA,ABABBBABABBBBBBBBBABA
BBBABA, . . . .

We introduce the parameterl5A/B into controlling the
ratio of mass of the two components.l is fixed at 0.8
throughout the paper except special cases. In our nume
simulations, the Nose´-Hoover thermostats@5,13# are put on
the first and the last particles, keeping them at temperat
T1 andT2 , respectively.

It is found that the stationary state sets in after 105 inte-
gration time units, thereafter the time average of heat fl

^Ji& @Ji5 ẋi(]V/]xi 11)# and the temperaturê Ti& (Ti

5pi
2/2mi) are found to be time independent (^Ji& is also

found site independent and is denoted byJ). In the present
paper the fixed boundary condition is adopted as is don
the usual studies of lattice heat conduction.

In previous studies the heat transport behavior of
monatomic FPU model and the disordered FPU model w
the particle masses randomly distributed in an interval h
been reported. In this paper, we report the numerical inv
tigations of the diatomic periodic FPU model and diatom
disordered FPU model. The result for the diatomic perio
©2002 The American Physical Society06-1
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FPU model agrees qualitatively with those for the mo
atomic FPU model@5# and the diatomic Toda model@6#. The
result for diatomic disordered FPU model also agrees w
that for the disordered FPU model with the particle mas
randomly distributed in an interval@11#. The results for the
quasiperiodic and fractal models are presented for the
time in this paper. In our study, particular attention is paid
establish a connection between macroscopic statistical
havior and microscopic-level dynamical properties. The
vestigations are respectively divided into two temperat
regions, high- and low-temperature cases, according to
previous knowledge on these kind of models.

Figure 1 shows spatial temperature profiles for these m
els. In the high-temperature case, we find an identical t

FIG. 1. Temperature profiles at~a! high-temperature region,~b!
and ~c! low-temperature region;i denotes the lattice position.
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perature gradient curves for all the models@Fig. 1~a!#. On the
other hand, in the low-temperature region@Figs. 1~b!, 1~c!#,
no temperature gradient is formed for PFPU model, as in
case of harmonic lattice model@14#. Temperature gradient is
formed in the other cases, but difference between differ
models is apparent: the curve of QFPU model is loca
between that of DFPU and PFPU models, while the tempe
ture profile in the FFPU case shows the fractal feature.

In Fig. 2, we presentJN(;k) versusN for different mod-
els in high- and low-temperature cases, respectively. No
that in the case of normal heat conductionJN is N indepen-
dent. In the high-temperature case@Fig. 2~a!#, the best fitting
for all the models yieldsJN;N0.43, which implies that the
heat conductivities diverge in the same way. In the lo
temperature case@Fig. 2~b!#, the scene is changed com
pletely. For the models of PFPU, QFPU, and FFPU the h
conductivities diverge, but for PFPUJN;N1, for QFPU
JN;N0.83, and for FFPUJN;N0.9. In the case of DFPU,
JN becomes constant whenN is sufficiently large, which
indicates that the heat conduction for this model obeys
Fourier law in the low-temperature region.

It is clear that the macroscopic behaviors for all the mo
els undergo a crossover when changing the temperature
low-temperature region to high-temperature region. In Fig
we display the quantityJ(N)/J(3N) versus T5(T1

1T2)/2. J(N) is the heat current for the system of sizeN.
Notice thatJ(N)/J(3N)53 indicates a normal heat condu
tivity while J(N)/J(3N),3 implies a diverged one. The
specific case ofJ(N)/J(3N)51 shows thatJ is size inde-
pendent. We find that in very low temperature region PF
appears as a harmonic model while the DFPU model sh
a normal heat conduction behavior@N is fixed to 243 for all
the models, so one cannot expect that the value
J(N)/J(3N) for the DFPU model is exactly equal to 3 be
cause of the size effect. One can see from Fig. 2 that
normal heat conductivity of the DFPU model does not set
until N.700#, while the curves for QFPU and FFPU a
located between those for the two extreme models. On
other hand, the heat conductivities of all the models are
normal in the high-temperature region and diverge in
same manner, i.e.,J(N)/J(3N);1.7, corresponding to the
diverging law ofJN;N0.43.

Thus, two questions arise from the above observatio
First, why all the models studied here~as well as the mon-
atomic FPU-b model @5,8,11# and the diatomic Toda mode
@6# studied earlier! show the same transport behavior in t
high-temperature region and what the diverging law in
FIG. 2. Heat conductivity vsN in ~a! high-
temperature case and~b! low-temperature case.
6-2
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cates? Second, what the different energy transport beha
of the different models in the low-temperature region imp

In order to fix up these two questions, we need to est
lish a connection between microscopic-level dynami
properties and macroscopic statistical behavior, i.e., to
out what microscopic dynamics is responsible for the
served high- and low-temperature properties. Therefore,
decompose the interaction of the thermostat into a serie
kicks and observe the motion of a single kink along t
chains on different initial conditions. This method has be
used in Refs.@8# and @11# for similar purpose. In Fig. 4 we
plot Hi versusi at t5400. The first column shows the resul
with the initial excitationp155 and pi50 for iÞ1. This
excitation corresponds to high-temperature excitation. T
second column is obtained on the initial excitationp1
50.005 andpi50 for iÞ1 and represents low-temperatu
case. We can see that solitary waves are excited in all
models in the first column while in the second column t
excitations are linear wave packets@here we call them the
linear wave packets since their shapes are similar to tha
their harmonic counterparts obtained by erasing the un
monic terms inV(xi 112xi) in their models#. In the PFPU
case the solitary wave pocket shown in the first colu
keeps its energy when propagating along the chain, lea
behind a disconnected linear wave packet trail exactly si
lar with the wave packet observed in the second column
other cases the solitary waves in the first column decre
their amplitudes slowly when propagating along the cha
but keep a large fraction of initial energy. The excitations
the second column propagate essentially in the harm
way, i.e., no clear difference can be found when compar
them with those of corresponding harmonic models~by eras-
ing the nonlinear terms in the corresponding models!.

Figure 4 indicates that the solitary waves can be excita
not only in the periodic model but also in aperiodic syste
with high-amplitude kinks. The solitary wave is a kind
energy localization phenomenon induced by strong non
earity. Andson localization theory based on normal mo
analysis is not applicable in this case and cannot be use
explain the phenomena in high-temperature region. Th
fore the heat conduction behaviors in high temperature c
should be analyzed in the framework of solitary wave d
namics, more specifically, the scattering behaviors of

FIG. 3. Crossover from low-temperature region to hig
temperature region.
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solitary waves. The first column of Fig. 4 indicates that
solitary wave can be scattered by the lattice structures. It
shows @8# that a solitary wave can be scattered by oth
solitary waves, unlike the true solitons in the integrable mo
els such as the monatomic Toda lattice. Then which kind
scattering mechanism should be responsible for the obse
devergent law of heat conductivity? Despite different stru
tures, all models, including the monatomic FPU-b model
@5,8,11# and the diatomic Toda model@6#, show the same
devergent law of heat conductivity. So we believe the lat
is correct. As illustrated in Ref.@8#, a remarkable feature o
the solitary wave to solitary wave scattering is that the c
tinuous scattering cannot destroy the correlation of an ini
excitation. This makes the solitary wave scattering mec
nism different from that of random-walk-like one and resu
in the divergent law.

Besides, the second column of Fig. 4 shows that the lo
amplitude excitations behave differently in different mode
One can see that the low-amplitude excitation cannot be s
tered by periodic structure but can be scattered by aperi
structures. This fact should be responsible for the differ
energy transport properties observed in the low-tempera
region. For the periodic model, the excitations can mo
freely from one side of the chain to the other, which expla
the fact that no temperature gradient can be formed along
periodic lattice chain and the heat flux is size independe
This result indeed agrees with Bloch’s theorem, which sta
that the eigenstates of a system with a periodic potential
extended, having the same nominal amplitude at all positi
in space. For the disordered models, the excitations are s
tered by the lattice structure. The normal heat conduct
behavior of this kind of model in the low-temperature regi
should be attributed to the fact of fully localized states
gether with the weak nonlinear interaction among the sta
~Here we believe that the nonlinear term in the pote
tialshould play a role in normal heat conduction behav

FIG. 4. The excitation in high-temperature case~first column!
and low-temperature case~second column!.
6-3



d
e

e
io
y.
in

ex
a

an
n
ra
a
d

xc
th
ol
o
,
b

ity
ea
th

po
-
on

his
nism
sor-
on-
l-
the
s as

pic
iors

er-
ical
red
ed
n-

ded
e-
can-
the

eat
l of
nal

e-
in

YONG ZHANG AND HONG ZHAO PHYSICAL REVIEW E66, 026106 ~2002!
since a harmonic disordered one-dimensional lattice un
the fixed boundary conditions as used in this paper has b
proven to show a behavior ofk;N21/2 instead of a size-
independent heat conductivity@15#, thus disordered structur
alone cannot ensure a normal heat conduction behav!
Quasiperiodic and fractal structures also scatter energ
one-dimensional quasiperiodic system is dominated ma
by critically localized states@2#, which indicates a critical
decay relationship between fully localized states and
tended states. For a fractal model, the normal modes
made up of extended states, critically localized states
localized states@3#. The fact of abnormal heat conductio
indicates that these features cannot ensure an energy t
port behavior governed by Fourier law. The fractal model h
a higher energy transport capability than the quasiperio
structure since there exist extended states in the former.

In summary, in the high-temperature case, the main e
tations in all the models studied are solitary waves, and
energy scattering is dominated by the solitary wave to s
tary wave scattering mechanism. As a result, the heat c
ductivity diverges asN0.43. The disordered, quasiperiodic
and fractal structures can decrease the total heat flux,
have no influence on the diverging law of heat conductiv

On the other hand, the low-temperature scenario app
to be dominated by harmonic waves that are sensitive to
large-scale structure of the chain. As a result the trans
property is different from model to model in the low
temperature region. No temperature gradient is formed al
ig
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the periodic chain and the heat flux is size independent. T
is because of the absence of an energy scattering mecha
for the extended eigenstates in periodic models. The di
dered one-dimensional systems exhibit a normal heat c
duction behavior, which can be attributed to the ‘‘fully loca
ized’’ feature of the eigenstates. The heat conductivity in
quasiperiodic and fractal systems is abnormal. It diverge
k;Ng with 0,g,1. The specific value ofg is determined
by the specific structure of the models. Other macrosco
properties of these two systems also show critical behav
between fully localized systems and extended ones.

The results of one-dimensional lattice models explain c
tain aspects of high-dimensional lattice models. Theoret
work on the classical wave problem shows that all disorde
one- and two-dimensional systems must be fully localiz
and critically localized, respectively, and that in three dime
sions there can be transitions from localized to exten
states@1#. One can then expect that for two- and thre
dimensional systems even the disordered structure alone
not ensure the normal macroscopic transport behavior. So
situation for searching a lattice model with the normal h
conduction and therefore taking it as a microscopic mode
studying energy transport of phonons in high-dimensio
medium will be more difficult.

This work was supported in part by the Major State R
search Development 973 Project of Nonlinear Science
China and the National Natural Foundation of China.
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