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Heat conduction in a one-dimensional aperiodic system
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We study the energy transport properties of one-dimensional nonlinear aperiodic lattice models in this paper.
It is found that, compared with their periodic and disordered counterparts, the quasiperiodic and fractal models
exhibit critical macroscopic behavior in the low-temperature region, while in the high-temperature region all
the models show the same property of energy transport. The relationship between the observed macroscopic
behaviors and the localization theory is discussed.
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It is of fundamental importance to establish a connectiorMore specifically, we adopt a well-known molecular dynam-
between microscopic-level dynamical properties and macroics model, i.e., the FP\B model described by the Hamil-
scopic statistical behavior of molecular systems. In con{onian
densed matter physics, the localization theory plays a key
role when aperiodic structures are involved. For one- N p?
dimensional systems, as is well known, all the eigenstates are H= 2| Hi, H; “om V(X117 X))
either extended in a periodic lattice model or localized in a '
d_isor.der.ed ongl]. Betwgen these two extremes are_the QUayith \(x) =x2/2+ Bx*/4. B is fixed to 1 throughout the pa-
siperiodic systems, which are believed to be dominated byer . "denotes the mass of thih particle. In our study we
cr|t|<_:al elgenstateEZ]3 and the fractal systems, in whose Vi- |imit m; to the binary valueA or B. When putting the par-
brational spectra exist a crossover'between extended statggeg along the chain wittA and B alternately a periodic
(long-wavelength phongnand localized stategso-called  Fpy model(PFPU is obtained, and in the specific case of
fracton [3]. The study of quasiperiodic systems and fractalaA=B one meets the normal monatomic FBUmodel.
systems has attracted particular interest since they represehen arranging particle masses withor B in a random
intermediate cases between periodic solids and disordereglay, a disordered FPU modéDFPU) is gotten. And when
ones. It has been found that a lot of real-world materials havenanaging the mass distribution of the particles following the
quasiperiodic ordef2,4] or fractal structurd3]. Therefore, Fibonacci sequence, one approaches a quasiperiodic FPU
investigating the statistical properties of these systems anchodel (QFPU [2]. A Fibonacci sequenceB,BA,BAB,
establishing their connection to the microscopic feature8ABBABABBABABBABBABABBABBA... is cre-
mentioned above will be important for both theoretical stud-ated according to the production rug=S;_4|S;_, for
ies and applications. j=3 with S;=B and S,=BA. Meanwhile when applying

Heat conduction in a chain of coupled nonlinear oscilla-an iterative rule, A—ABA, B—BBB continuously one
tors is a vivid example of studying the microscopic origin of get the Cantor fractal structure modéFFPU [12]:
the macroscopic behaviors in terms of deterministic microA,ABAABABBBABAABABBBABABBBBBBBBBABA
scopic dynamics. It is one of the oldest but still a ratherBBBABA ... . _
fundamental problem in nonequilibrium statistical mechan- We introduce the parametar=A/B into controlling the
ics. Intending to understand the underlying mechanism of théatio of mass of the two components. is fixed at 0.8
Fourier heat law J= — xdT/dx, whereJ is the heat flux; through_out the paper except special cases. In our numerical
dT/dx is the temperature gradient; is the heat conductiv- Simulations, the Noseloover thermostatg5,13] are put on
ity), the study of heat conduction has attracted increas;inq1e first and the last particles, keeping them at temperatures
attention in recent yeafs—11]. Normal heat transport be- |+ andT_, respectively. _
havior governed by the Fourier heat law implies a decay law It is found that the stationary state sets in afte? Ie-
of heat fluxJ~N~1, whereN is the system size. For one- gration t|me units, thereafter the time average of heat flux
dimensional nonlinear lattice models, it has shown that théJ;) [Ji=X;(dV/dx;+1)] and the temperaturdT;) (T;
heat conductivity is abnormaiith J~N~°%%9 in the case =pi2/2mi) are found to be time independentJ() is also
without onsite potentidl5,6] and is normalwith J~N"1) in  found site independent and is denotedXy In the present
the existence of an onsite potent{@-9]. The exceptions paper the fixed boundary condition is adopted as is done in
with a normal heat conduction in the absence of the onsit¢he usual studies of lattice heat conduction.
potential are also found in two kinds of models, one is the In previous studies the heat transport behavior of the
one-dimensional lattice with periodic potential of nearest-monatomic FPU model and the disordered FPU model with
neighbor interactiof10], and another is the disordered FPU- the particle masses randomly distributed in an interval have
B model[11]. been reported. In this paper, we report the numerical inves-

In order to unfold the role of the localization more clearly tigations of the diatomic periodic FPU model and diatomic
we focus on the models without onsite potential in this paperdisordered FPU model. The result for the diatomic periodic
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FIG. 1. Temperature profiles &) high-temperature regiorib)

and(c) low-temperature regiori;denotes the lattice position.
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perature gradient curves for all the modgfgy. 1(a)]. On the
other hand, in the low-temperature regidtigs. 1(b), 1(c)],

no temperature gradient is formed for PFPU model, as in the
case of harmonic lattice modgl4]. Temperature gradient is
formed in the other cases, but difference between different
models is apparent: the curve of QFPU model is located
between that of DFPU and PFPU models, while the tempera-
ture profile in the FFPU case shows the fractal feature.

In Fig. 2, we preseniN(~ «) versusN for different mod-
els in high- and low-temperature cases, respectively. Notice
that in the case of normal heat conductibX is N indepen-
dent. In the high-temperature cd$gg. 2(a)], the best fitting
for all the models yieldsIN~N°43 which implies that the
heat conductivities diverge in the same way. In the low-
temperature casgFig. 2(b)], the scene is changed com-
pletely. For the models of PFPU, QFPU, and FFPU the heat
conductivities diverge, but for PFPUN~N?, for QFPU
IN~N®83 and for FFPUIN~N?®, In the case of DFPU,
JN becomes constant wheM is sufficiently large, which
indicates that the heat conduction for this model obeys the
Fourier law in the low-temperature region.

It is clear that the macroscopic behaviors for all the mod-
els undergo a crossover when changing the temperature from
low-temperature region to high-temperature region. In Fig. 3,
we display the quantityJ(N)/J(3N) versus T=(T,
+T_)/2. J(N) is the heat current for the system of sige
Notice thatJ(N)/J(3N) =3 indicates a hormal heat conduc-
tivity while J(N)/J(3N)<3 implies a diverged one. The
specific case 0of(N)/J(3N)=1 shows that] is size inde-
pendent. We find that in very low temperature region PFPU
appears as a harmonic model while the DFPU model shows
a normal heat conduction behavid¥ is fixed to 243 for all
the models, so one cannot expect that the value of

FPU model agrees qualitatively with those for the mon-J(N)/J(3N) for the DFPU model is exactly equal to 3 be-
atomic FPU mode]5] and the diatomic Toda modgs]. The
result for diatomic disordered FPU model also agrees witthormal heat conductivity of the DFPU model does not set up
that for the disordered FPU model with the particle massesntil N>700], while the curves for QFPU and FFPU are
randomly distributed in an intervalll]. The results for the
quasiperiodic and fractal models are presented for the firgaither hand, the heat conductivities of all the models are ab-
time in this paper. In our study, particular attention is paid tonormal in the high-temperature region and diverge in the
establish a connection between macroscopic statistical beéame manner, i.eJ(N)/J(3N)~1.7, corresponding to the
havior and microscopic-level dynamical properties. The in-diverging law of JN~N%43
vestigations are respectively divided into two temperature Thus, two questions arise from the above observations.
regions, high- and low-temperature cases, according to theirst, why all the models studied hefas well as the mon-
previous knowledge on these kind of models.
Figure 1 shows spatial temperature profiles for these mod6] studied earlier show the same transport behavior in the
els. In the high-temperature case, we find an identical temhigh-temperature region and what the diverging law indi-
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In order to fix up these two questions, we need to estab- N N
lish a connection between microscopic-level dynamical S )
properties and macroscopic statistical behavior, i.e., to find FIG. 4. The excitation in high-temperature ca§est column
out what microscopic dynamics is responsible for the ob-nd low-temperature cagsecond column
served high- and low-temperature properties. Therefore, we
decompose the interaction of the thermostat into a series Gfolitary waves. The first column of Fig. 4 indicates that a
kicks and observe the motion of a single kink along thesolitary wave can be scattered by the lattice structures. It also
chains on different initial conditions. This method has beershows[8] that a solitary wave can be scattered by other
used in Refs[8] and[11] for similar purpose. In Fig. 4 we solitary waves, unlike the true solitons in the integrable mod-
plot H; versusi att=400. The first column shows the results els such as the monatomic Toda lattice. Then which kind of
with the initial excitationp,=5 andp;=0 for i#1. This  scattering mechanism should be responsible for the observed
excitation corresponds to high-temperature excitation. Thelevergent law of heat conductivity? Despite different struc-
second column is obtained on the initial excitatipn tures, all models, including the monatomic FBUmodel
=0.005 andp;=0 fori#1 and represents low-temperature [5,8,11 and the diatomic Toda mod¢6], show the same
case. We can see that solitary waves are excited in all théevergent law of heat conductivity. So we believe the latter
models in the first column while in the second column theis correct. As illustrated in Ref8], a remarkable feature of
excitations are linear wave packdtsere we call them the the solitary wave to solitary wave scattering is that the con-
linear wave packets since their shapes are similar to that dinuous scattering cannot destroy the correlation of an initial
their harmonic counterparts obtained by erasing the unhaexcitation. This makes the solitary wave scattering mecha-
monic terms inV(x; ., —X;) in their modelg. In the PFPU nism different from that of random-walk-like one and results
case the solitary wave pocket shown in the first columnn the divergent law.
keeps its energy when propagating along the chain, leaving Besides, the second column of Fig. 4 shows that the low-
behind a disconnected linear wave packet trail exactly simiamplitude excitations behave differently in different models.
lar with the wave packet observed in the second column. IifDne can see that the low-amplitude excitation cannot be scat-
other cases the solitary waves in the first column decreasered by periodic structure but can be scattered by aperiodic
their amplitudes slowly when propagating along the chainstructures. This fact should be responsible for the different
but keep a large fraction of initial energy. The excitations inenergy transport properties observed in the low-temperature
the second column propagate essentially in the harmoniegion. For the periodic model, the excitations can move
way, i.e., no clear difference can be found when comparindreely from one side of the chain to the other, which explains
them with those of corresponding harmonic modbélseras-  the fact that no temperature gradient can be formed along the
ing the nonlinear terms in the corresponding models periodic lattice chain and the heat flux is size independent.

Figure 4 indicates that the solitary waves can be excitate@his result indeed agrees with Bloch’s theorem, which states
not only in the periodic model but also in aperiodic systemshat the eigenstates of a system with a periodic potential are
with high-amplitude kinks. The solitary wave is a kind of extended, having the same nominal amplitude at all positions
energy localization phenomenon induced by strong nonlinin space. For the disordered models, the excitations are scat-
earity. Andson localization theory based on normal moddered by the lattice structure. The normal heat conduction
analysis is not applicable in this case and cannot be used tmehavior of this kind of model in the low-temperature region
explain the phenomena in high-temperature region. Thereshould be attributed to the fact of fully localized states to-
fore the heat conduction behaviors in high temperature casgether with the weak nonlinear interaction among the states.
should be analyzed in the framework of solitary wave dy-(Here we believe that the nonlinear term in the poten-
namics, more specifically, the scattering behaviors of theialshould play a role in normal heat conduction behavior
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since a harmonic disordered one-dimensional lattice undehe periodic chain and the heat flux is size independent. This
the fixed boundary conditions as used in this paper has beds because of the absence of an energy scattering mechanism
proven to show a behavior of~N~%2 instead of a size- for the extended eigenstates in periodic models. The disor-
independent heat conductivifg5], thus disordered structure dered one-dimensional systems exhibit a normal heat con-
alone cannot ensure a normal heat conduction behaviorduction behavior, which can be attributed to the “fully local-
Quasiperiodic and fractal structures also scatter energy. fxed” feature of the eigenstates. The heat conductivity in the
one-dimensional quasiperiodic system is dominated mainlyyasiperiodic and fractal systems is abnormal. It diverges as
by crltlcally_locaI!zed state$2], which |r_1d|cates a critical . N> with 0< y<1. The specific value of is determined
decay relationship between fully localized states and expy the specific structure of the models. Other macroscopic

tended states. For a fractal model, the normal modes argoperties of these two systems also show critical behaviors
made up of extended states, critically localized states angenyeen fully localized systems and extended ones.
localized stateg3]. The fact of abnormal heat conduction e results of one-dimensional lattice models explain cer-

indicates that these features cannot ensure an energy trafgin aspects of high-dimensional lattice models. Theoretical
port behavior governed by Fourier law. The fractal model hagyork on the classical wave problem shows that all disordered
a higher energy transport capability than the quasiperiodigne. and two-dimensional systems must be fully localized
structure since there exist extended states in the former. 54 critically localized, respectively, and that in three dimen-
In summary, in the high-temperature case, the main excigions there can be transitions from localized to extended
tations in all the models studied are solitary waves, and th%tates[l]. One can then expect that for two- and three-
energy scattering is dominated by the solitary wave to soligimensional systems even the disordered structure alone can-
tary wave scattering ngighanlsm.. As a result, the heat consot ensure the normal macroscopic transport behavior. So the
ductivity diverges asN™™. The disordered, quasiperiodic, sjwyation for searching a lattice model with the normal heat
and fractal structures can decrease the total heat flux, buhnduction and therefore taking it as a microscopic model of

have no influence on the diverging law of heat conductivity.studying energy transport of phonons in high-dimensional
On the other hand, the low-temperature scenario appeafsedium will be more difficult.

to be dominated by harmonic waves that are sensitive to the

large-scale structure of the chain. As a result the transport This work was supported in part by the Major State Re-
property is different from model to model in the low- search Development 973 Project of Nonlinear Science in
temperature region. No temperature gradient is formed alon@hina and the National Natural Foundation of China.
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